micom.optcom ============ .. py:module:: micom.optcom .. autoapi-nested-parse:: Implements optimization and model problems. Attributes ---------- .. autoapisummary:: micom.optcom._methods Functions --------- .. autoapisummary:: micom.optcom.add_dualized_optcom micom.optcom.add_moma_optcom micom.optcom.optcom Module Contents --------------- .. py:function:: add_dualized_optcom(community, min_growth) Add dual Optcom variables and constraints to a community. Uses the original formulation of OptCom and solves the following multi-objective problem:: maximize community_growth s.t. maximize growth_rate_i for all i s.t. Sv_i = 0 lb_i >= v_i >= ub_i .. rubric:: Notes This method will only find one arbitrary solution from the Pareto front. There may exist several other optimal solutions. :param community: The community to modify. :type community: micom.Community :param min_growth: The minimum growth rate for each individual in the community. Either a single value applied to all individuals or one value for each. :type min_growth: positive float or array-like object. .. py:function:: add_moma_optcom(community, min_growth, linear=False) Add a dualized MOMA version of OptCom. Solves a MOMA (minimization of metabolic adjustment) formulation of OptCom given by:: minimize cooperativity_cost s.t. maximize community_objective s.t. Sv = 0 lb >= v >= ub where community_cost = sum (growth_rate - max_growth)**2 if linear=False or community_cost = sum |growth_rate - max_growth| if linear=True :param community: The community to modify. :type community: micom.Community :param min_growth: The minimum growth rate for each individual in the community. Either a single value applied to all individuals or one value for each. :type min_growth: positive float or array-like object. :param linear: Whether to use a non-linear (sum of squares) or linear version of the cooperativity cost. If set to False requires a QP-capable solver. :type linear: boolean .. py:data:: _methods .. py:function:: optcom(community, strategy, min_growth, fluxes, pfba) Run OptCom for the community. OptCom methods are a group of optimization procedures to find community solutions that provide a tradeoff between the cooperative community growth and the egoistic growth of each individual [#p1]_. `micom` provides several strategies that can be used to find optimal solutions: - "moma": Minimization of metabolic adjustment. Simultaneously optimizes the community objective (maximize) and the cooperativity cost (minimize). This method finds an exact maximum but doubles the number of required variables, thus being slow. - "lmoma": The same as "moma" only with a linear representation of the cooperativity cost (absolute value). - "original": Solves the multi-objective problem described in [#p1]_. Here, the community growth rate is maximized simultanously with all individual growth rates. Note that there are usually many Pareto-optimal solutions to this problem and the method will only give one solution. This is also the slowest method. :param community: The community to optimize. :type community: micom.Community :param strategy: The strategy used to solve the OptCom formulation. Defaults to "lagrangian" which gives a decent tradeoff between speed and correctness. :type strategy: str :param min_growth: The minimal growth rate required for each individual. May be a single value or an array-like object with the same length as there are individuals. :type min_growth: float or array-like :param fluxes: Whether to return the fluxes as well. :type fluxes: boolean :param pfba: Whether to obtain fluxes by parsimonious FBA rather than "classical" FBA. :type pfba: boolean :returns: The solution of the optimization. If fluxes==False will only contain the objective value, community growth rate and individual growth rates. :rtype: micom.CommunitySolution .. rubric:: References .. [#p1] OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. Zomorrodi AR, Maranas CD. PLoS Comput Biol. 2012 Feb;8(2):e1002363. doi: 10.1371/journal.pcbi.1002363, PMID: 22319433